Anlage 1.2

Folgemessung zur Grundwasseruntersuchung (GW 11) im Rahmen der MNA

(BFM 2025)

Franke-Meißner und Partner GmbH | Max-Planck-Ring 47 | 65205 Wiesbaden

Immobilien Mitte Grundstücksgesellschaft mbH Domstraße 20 50688 Köln

moritz.funke@rewe-group.com per E-Mail:

23. September 2025 / AS - se

Fliegerhorst Langendiebach, "SO Nahrung und Verpackung", Erlensee Folgemessung zur Grundwasseruntersuchung (GW 11) im Rahmen der MNA

BFM-Projektnummer 15095-3 (bei Schriftwechsel bitte angeben)

Seiten 9 2 Anlagen

Bezug

- [1] Zustimmung zu [2]; Nutzungsbezogenes Sanierungskonzept (MNA) für das Gelände der Fa. Brandenburg auf dem ehem. Fliegerhorst-Gelände in Erlensee. Regierungspräsidium Darmstadt, Abteilung Arbeitsschutz und Umwelt Frankfurt, Gutleutstraße 114, Az.: IV-F-41.1-100i-0451; 60327 Frankfurt am Main; 25. Juni 2019.
- [2] Gutachten "Nutzungsbezogenes Sanierungskonzept Monitored Natural Attenuation (MNA) vom 17.04.2019, erstellt vom Baugrundinstitut Franke-Meißner und Partner GmbH (BFM) Wiesbaden.

Max-Planck-Ring 47 65205 Wiesbaden-Delkenheim Telefon 06122 95 62-0

info@bfm-wi.de www.bfm-wi.de

Erd- und Grundbau Spezialtiefbau Fels- und Tunnelbau Deponie- und Dammbau Straßenbau Geothermie Umwelttechnik Altlastensanierung Gebäuderückbau

Bodenmechanisches Labor Baugrunduntersuchungen Grundwasseruntersuchungen Geotechnische Messungen Altlastenerkundung Geotechnische Beratung Statische Berechnungen Objektplanung Bauüberwachung Bauschadensanalysen

Geschäftsführende Gesellschafter

Dipl.-Ing. Ulrich Adamietz Sachverständiger** für Erd- und Grundbau

Dipl.-Ing. Jürgen Dinkheller Sachverständiger* für Bodenmechanik, Erd- und Grundbau

Dipl.-Ing. Erhan Gürliyen

Dipl.-Ing. Dieter Ringleb Sachverständiger* für Altlasten und Gebäuderückbau

Gesellschafter

Dr.-Ing. Antonios Anthogalidis Prüfsachverständiger für Erd- und Grundbau nach HPPVO

Dipl.-Ing. Ottmar Eisenbach Sachverständiger* für Baugrund und Grundbau Prüfsachverständiger für Erd- und Grundbau nach HPPVO

Dipl.-Ing. Kai Glaser Sachverständiger* für Schadstofferkundung und -rückbau in und an Gebäuden

Dipl.-Ing. Hayo Krechberger

Dipl.-Ing. Andreas Rheinlaender

Dipl.-Ing. Dipl.-Geol. Jürgen Scherschel

Dr.-Ing. Thomas Waberseck

- Von der IHK Wiesbaden öffentlich bestellt und vereidigt
- Von der Ingenieurkammer Hessen öffentlich bestellt und vereidigt

Sitz der Gesellschaft

Wiesbaden

Registergericht

Amtsgericht Wiesbaden: HR B 6697

Bericht zur Grundwasseruntersuchung GW 11 im Rahmen der MNA

1 Vorgang

Die Immobilien Mitte Grundstücksgesellschaft mbH plant im Bereich des ehemaligen Fliegerhorstes Langendiebach im Gemarkungsbereich der Gemeinden Bruchköbel und Erlensee (Teilstück "SO Nahrung und Verpackung") den Neubau eines Fabrikationsgebäudes zur Brotherstellung.

Auf dem Grundstück befinden sich Untergrundkontaminationen (Boden, Bodenluft, Grundwasser). Ein Nachschub der Kontaminanten ist nicht mehr vorhanden; die dafür verantwortlichen unterirdischen Bauteile wurden allesamt in den vergangenen Jahrzehnten durch den ehemaligen Nutzer der Liegenschaft (U.S. Army) entfernt, oder gereinigt und stillgelegt.

Die Untergrundbelastungen sind durch eine Vielzahl an Gutachten als ortsstabil eingestuft worden. Eine Ausbreitung ist seit sehr vielen Jahren nachweislich nicht vorhanden. Da in situ ein Schadstoffabbau vorhanden ist, soll in Abstimmung mit der zuständigen Genehmigungsbehörde, dem Regierungspräsidium Darmstadt, Abteilung Arbeitsschutz und Umwelt Frankfurt (RPU-FFM), der weitere natürliche Schadstoffabbau durch ein Monitoringprogramm (MNA = Monitored Natural Attenuation) begleitet und die ortsstabile Lage der Untergrundbelastungen dokumentiert werden.

Hierfür sollen insgesamt 7 Grundwassermessstellen (Bezeichnung "GWM MNA 19-1" bis "GWM MNA 19-7") eingerichtet und der Status (Ist-Zustand) der Grundwasserbelastung dokumentiert werden. Das Grundwasser soll dann in den kommenden Jahren entsprechend des mit dem RPU-FFM abgestimmten Monitoring-Programms (siehe [1] und [2] untersucht werden.

Die Baugrundinstitut Franke-Meißner und Partner GmbH (BFM), Wiesbaden, wurde in diesem Zusammenhang von der Immobilien Mitte Grundstücksgesellschaft mbH beauftragt, die für das Monitoring-Programm notwendige und mit dem RPU-FFM gemeinsam abgestimmte Einrichtung von Grundwassermessstellen zu veranlassen und das Grundwasser zu untersuchen. Zunächst wurde mit der Errichtung von 3 Grundwassermessstellen begonnen

Bericht zur Grundwasseruntersuchung GW 11 im Rahmen der MNA

(siehe BFM-Bericht vom 6. Juli 2021), da die endgültige Gebäudeplanung noch nicht vorlag, von der wiederum die Lage der Abstrommessstellen abhing.

Die Gebäudeplanung liegt seit 08/2025 vor, sodass die Lage der vier weiteren Grundwassermessstellen jetzt in Abstimmung mit dem Bauherrn und dem RP festgelegt werden konnte. Planmäßig sollen diese im Oktober 2025 hergestellt werden.

Diese drei Messstellen (GWM MNA 19-4, GWM MNA 19-6, GWM MNA 19-7) für die MNA wurden in Abstimmung mit dem RPU-FFM im Mai 2021 hergestellt und wie folgt beprobt:

- 1. die Status-quo Messung, bezeichnet als GW 0, am 10.06.2021,
- 2. die erste Folgemessung (GW 1) am 08.09.2021,
- 3. die zweite Folgemessung (GW 2) am 13.12.2021,
- 4. die dritte Folgemessung (GW 3) am 10.03.2022,
- 5. die vierte Folgemessung (GW 4) am 07.06.2022,
- 6. die fünfte Folgemessung (GW 5) am 13.09.2022,
- 7. die sechse Folgemessung (GW 6) am 25.01.2023,
- 8. die siebte Folgemessung (GW 7) am 28.04.2023,
- 9. die achte Folgemessung (GW 8) am 19.10.2023,
- 10. die neunte Folgemessung (GW 9) am 12.04.2024,
- 11. die zehnte Folgemessung (GW 10) am 04.11.2024 und
- 12. die elfte Folgemessung (GW 11) am 19.08.2025.

Bericht zur Grundwasseruntersuchung GW 11 im Rahmen der MNA

Abbildung 1: Entwurf Fabrikationsgebäude mit GW-Messstellen

2 Eigene und fremde Unterlagen

Für die Erstellung des vorliegenden Berichtes wurde eine Vielzahl von Gesetzen und Richtlinien verwendet, von denen nur ein kleiner Teil nachfolgend aufgeführt wird:

- [3] Hessisches Landesamt für Umwelt und Geologie (HLUG), Handbuch Altlasten, Band 8, Teil 1, Arbeitshilfe zu überwachten natürlichen Abbau- und Rückhalteprozessen im Grundwasser (Monitored Natural Attenuation MNA) 2., überarbeitete Auflage 2005, Wiesbaden 2005.
- [4] Verwaltungsvorschrift zur Erfassung, Bewertung und Sanierung von Grundwasserverunreinigungen; (genannt GwS-VwV) Hessisches Ministerium für Umwelt, Klimaschutz, Landwirtschaft und Verbraucherschutz, Wiesbaden, den 28. September 2016.
- [5] Für das Gesamtgebiet des ehemaligen Fliegerhorstes Langendiebach bei Erlensee liegen uns umfangreiche eigene und fremde Aufschlussergebnisse aus vielfältigen Erkundungskampagnen im Zusammenhang mit umwelt- und geotechnischen Fragestellungen vor.

Bericht zur Grundwasseruntersuchung GW 11 im Rahmen der MNA

3 Messprogramm und Auslöseschwellen

Zur Beurteilung des Schadstoffabbaus sollen Proben aus den zunächst drei (später sieben) Grundwassermessstellen auf die nachfolgend aufgeführten Parameter untersucht werden.

Das Messprogramm beinhaltet weitgehend die in dem Handbuch Altlasten aufgeführten Untersuchungen (Arbeitshilfe zu überwachten natürlichen Abbau- und Rückhalteprozessen im Grundwasser; siehe Kap.2, [3]).

Tabelle 1: Messprogramm It. [3] und [4]							
Feldparameter:	Sauerstoff						
	Redoxspannung						
	pH-Wert,						
	Temperatur und						
	el. Leitfähigkeit						
Anionen:	Nitrat						
	Nitrit						
	Sulfat						
	Hydrogencarbonat,						
	Phosphat-P						
Kationen:	Ammonium-N						
	Mangan						
	Eisen						
Organische Parameter:	ΣΡΑΚ						
	BTEX						
	MKW						
	AOX						
	Schwermetalle						
	LHKW						
	DOC						
Sonstige	Säurekapazität						

Der Untersuchungsumfang kann erforderlichenfalls in Abstimmung mit der zuständigen Behörde (RPU-FFM) geändert werden.

Als Auslöseschwellen wurden gemäß Sanierungskonzept (siehe Kap 1 in [3]) die 3-fachen Geringfügigkeitsschwellenwerte einer der Parameter MKW, LHKW, BTEX, AOX gem. GWS-VwV vom 28.9.2016 in einer Probe aus den Abstrommessstellen MNA-ML 1-01 bis MNA-ML 1-06 festgelegt (an drei aufeinanderfolgenden Messungen).

Bericht zur Grundwasseruntersuchung GW 11 im Rahmen der MNA

4 Durchgeführte Maßnahmen

Im Zeitraum zwischen dem 18.05. und 20.05.2021 wurden an den in der Anlage 4 gekennzeichneten Stellen insgesamt drei Grundwassermessstellen hergestellt. Es handelt sich dabei um die Messstellen GWM MNA 19-4, GWM MNA 19-6 und GWM MNA 19-7. Die übrigen geplanten Messstellen wurden noch nicht hergestellt, da durch Änderungen des Fabrikgrundrisses ggf. noch Lageveränderungen der übrigen Messstellen vorgenommen werden müssen. Die Bohrungen für die Einrichtung der 5"-Messstellen (DN 125) hatten einen Durchmesser von 324 mm. Die großkalibrigen Bohrungen wurden verrohrt durch die Firma Terrasond GmbH & Co. KG, Darmstädter Str. 67, 64572 Büttelborn, im Auftrag der BFM abgeteuft und von der BFM umwelttechnisch begleitet.

Details zum Ausbau sowie Ausbauskizzen sind im BFM-Bericht vom 6. Juli 2021 enthalten. Die drei bislang hergestellten Messstellen sollen anfangs vierteljährlich beprobt werden, nach der siebten Folgemessung (im April 2023) erfolgte gemäß Beprobungskonzept der Übergang zu einer halbjährlichen Beprobung.

Grundwassermessstelle	Einrichtung	Koord	inaten
		Rechts-Wert	Hoch-Wert
GWM MNA 19-4	Monitoring-Linie 1, Messstelle 04	3496969.826	5558145.506
GWW WINA 19-4	im Abstrom der Schadenszentren	3430303.020	3330143.300
GWM MNA 19-6	In einem Schadenszentrum	3497133.417	5558240.492
GWW WINA 19-0	("Hot spot")	3437 133.417	3330240.432
GWM MNA 19-7	In einem Schadenszentrum	3497153.407	5558371.084
GVVIVI IVIIVA 19-7	("Hot spot"), Anstrombereich	J431 1JJ.4U1	333037 1.00 4

Die Lage der Messstellen und die einzelnen Koordinaten sind im Lageplan in der Anlage 4 aufgeführt.

Die Beprobung der Grundwassermessstellen zur elften Folgemessung (GW 11) erfolgte am 19. August 2025. Die zugehörigen Probenahmeprotokolle sind in der Anlage 2 enthalten.

Bericht zur Grundwasseruntersuchung GW 11 im Rahmen der MNA

5 Ergebnisse der durchgeführten Untersuchungen

5.1 Ergebnisse der Feldparametermessung im Gelände

Die Angaben zur Probenahme des Grundwassers (u.a. Entnahmetiefe der Grundwasserprobe, Fördermenge, Förderdauer, Pegelstände etc.) sind den jeweiligen Probenentnahmeprotokollen in der Anlage 3 zu entnehmen.

Die gemessenen Feldparameter sind:

- Wassertemperatur (in °C)
- pH-Wert
- el. Leitfähigkeit (in μS/cm)
- Sauerstoffgehalt (mg/l)
- Redox-Spannung

Die Ergebnisse sind in der nachfolgenden Tabelle aufgeführt:

Messstelle	Wassertemperatur Messung nach 5 Min. / 15 Min. ⁰ C	pH-Wert Messung nach 5 Min. / 15 Min.	el. Leitfähigkeit Messung nach 5 Min. / 15 Min. (µS/cm)	Sauerstoff Messung nach 5 Min. / 15 Min. (mg/l)	Redox- Spannung Messung nach 5 Min. / 15 Min. (mV)
GWM MNA 19-4	21,0 / 20,4	6,84 / 6,77	376 / 342	0,34 / 0,42	- / 352
GWM MNA 19-6	15,8 / 15,4	7,04 / 7,06	643 / 674	0,19 / 0,08	- / 146
GWM MNA 19-7	17,3 / 16,9	6,65 / 6,68	493 / 479	0,23 / 4,161	- / 167

^{- =} keine Messung

5.2 Laborergebnisse und Bewertung

Alle Laboruntersuchungen an den Grundwasserproben wurden im Auftrag der BFM durch das akkreditierte Chemisch Analytische Laboratorium CAL GmbH & Co. KG, Röntgenstraße 82, 64291 Darmstadt, durchgeführt.

Bericht vom 23. September 2025

Betr.: Fliegerhorst Langendiebach, Erlensee

Bericht zur Grundwasseruntersuchung GW 11 im Rahmen der MNA

Der Untersuchungsbericht 202508550 vom 23.09.2025 mit den Ergebnissen der Grundwasseruntersuchungen ist als Anlage 2 beigefügt.

Die Ergebnisse wurden den Geringfügigkeitsschwellenwerten der Länderarbeitsgemeinschaft Wasser gegenübergestellt (Länderarbeitsgemeinschaft Wasser (LAWA), Ableitung von Geringfügigkeitsschwellenwerten für das Grundwasser, Stand 2016; Stuttgart im Januar 2017). Die Ergebnisse sind als Anlage 1 beigefügt.

Die Gehalte der erwarteten Kontaminanten in der Abstrommessstelle GWM MNA 19-4 sind nicht nachweisbar; die bei der vergangenen Messung GW 10 festgestellten leicht erhöhten Parametergehalte wiederholen sich nicht.

Auch bei der Messstelle GWM MNA 19-6 sind keine auffälligen Parametergehalte festgestellt worden; keiner der Parameter ist auffällig erhöht oder liegt oberhalb des Geringfügigkeitsschwellenwertes.

Bei der GWM MNA 19-7, einem bekannten Kontaminationsbereich, liegt der Gehalt an MKW (Kohlenwasserstoffe), PAK, Naphtalin und BTEX (Benzol, Toluol, Ethylbenzol und Xylole), analog zu den vergangenen Messungen, um mehrere Größenordnungen oberhalb des Geringfügigkeitsschwellenwertes.

Alle Entwicklungen sind weiter zu beobachten.

Bearbeiter:

Andreas Schmidt (M. Sc.)

Erhan Gürliyen (Dipl.-Ing.)

Bericht zur Grundwasseruntersuchung GW 11 im Rahmen der MNA

Anlagenverzeichnis

Anlage 1.1: Auswerteliste der Laborergebnisse Grundwasser (Gegenüberstellung der Ergebnisse mit den Geringfügigkeitsschwellenwerten der Länderarbeitsgemeinschaft Wasser (LAWA))

Anlage 1.2: Gegenüberstellung der Messergebnisse mit vorangegangenen Messungen

Anlage 1.3: Grundwasserstände

Anlage 2: CAL-Untersuchungsbericht 202508550 vom 23.09.2025 inkl. PN-Protokolle

Projekt 15095-3 Brandenburg, Erlensee Beprobung Grundwassermessstellen am 19.08.2025 Auswertung der Laborergebnisse - GW 11

		⊥ Gegenüberstellung (der Analysener	gebnisse mit d	⊥ len Gerinfügigk	keitsschwellenv	werten der GW	S-VwV, Stand 2	28.09.2016	
Parameter	Messeinheit	Geringfügigkeits- schwellenwert GWS-VwV	(noch nicht hergestellt) GW 11	(noch nicht hergestellt) GW 11	(noch nicht hergestellt) GW 11	GWM MNA 19-4 GW 11	(noch nicht hergestellt) GW 11	GWM MNA 19-6 GW 11	GWM MNA 19-7 GW 11	
Nitrat	mg/L	-	-	-	-	2,200	-	<1	2,100	
Nitrit	mg/L	-	-	-	-	<0,05	-	<0,05	<0,05	
Sulfat	mg/L	-	-	-	-	14,600	-	10,700	2,100	
Hydrogenkarbonat	mg/L	-	-	-	-	223,000	-	436,000	314,000	
Phosphat-P	mg/L	-	-	-	-	0,078	-	0,250	0,250	
Ammonium-N	mg/L	-	-	-	-	<0,04	-	0,902	1,100	
Mangan	mg/L	-	-	-	-	0,447	-	1,030	0,189	
Eisen	mg/L	-	-	-	-	0,013	-	2,640	6,330	
Kohlenwasserstoffe	mg/L	0,100	-	-		<0,1	-	<0,1	1,880	
(AOX) Adsorb. Org. geb. Halogenverb.	mg/L	-	-	-	-	<0,01	-	0,021	0,016	
DOC	mg/L	-	-	-	-	2,710	-	13,400	14,700	
Säurekapazität	mmol/L	-	-	-	-	3,650	-	7,150	5,150	
PAK (Summe PAK ohne Naphthalin)	μg/L	0,200	-	-	-	**	-	0,043	1,210	
PAK (Naphthalin + Methylnaphthaline)	μg/L	1,000	-	-	-	**	-	0,000	8,890	
BTEX (Summe BTEX inkl. alkylierte Benzole)	μg/L	20,000	-	-	-	**	-	**	324,000	
Benzol	μg/L	1,000	-	-	-	**	-	**	<1	
LHKW Summe	μg/L	20,000	-	-	-	**	-	**	**	
LHKW Summe Tri- und Tetrachloreten (TRI+PER)	μg/L	10,000	-	-	-	**	-	**	**	
Arsen	μg/L	10,000	-	-	-	<5	-	<5	13,300	
Blei	μg/L	7,000	-	-	-	<5	-	<5	<5	
Cadmium	μg/L	0,500		-	i	<0,2		<0,2	<0,2	
Chrom	μg/L	7,000		-	-	<5	-	<5	<5	
Kupfer	μg/L	14,000		-		<10		<10	<10	
Nickel	μg/L	14,000		-	-	12,600		<10	<10	
Quecksilber	μg/L	0,200		-		<0,05		<0,05	<0,05	
Zink	μg/L	58,000		-		<10	-	<10	<10	
Thallium	μg/L	0,800	-	-	-	<0,5	-	<0,5	<0,5	
**: keine Einzelsubstanz nachweisbar auffällig; Überschreitung des Geringfügigkeitsschwe	ellenwertes (GFS)									
auffällig; es existiert kein GFS										

Projekt 15095-3 Brandenburg, Erlensee Beprobung Grundwassermessstellen Auswertung der Laborergebnisse

	Gege	nüberstellung der	Ergebnisse	einzelner Mes	sstellen mit v	orangegange	enen Messunç	gen					
Parameter	Messeinheit	Geringfügigkeits- schwellenwert GWS-VwV	GW 0	GW 2	GW 3	GW 4	GW 5	MNA 19-4	l gw 7	l GW 8	GW 9	GW 10	GW 11
Datum der Probenahme			09.06.202		10.03.2022					19.10.2023			19.08.2025
Nitrat	mg/L	-	3,70	_	ļ			12,400			6,300		2,200
Nitrit	mg/L	-		9 < 0,05	<0,05	<0,05	<0,05	<0,05	<0,05		<0,05		<0,05
Sulfat	mg/L	-	52,50		 		26,700		32,800	23,200	+	13,200	14,600
Hydrogenkarbonat	mg/L	-	245,00	0 230,000	273,000	215,000	214,000	267,000	271,000	218,000	292,000	232,000	223,000
Phosphat-P	mg/L	-	<0,01	0,023	0,070	0,028	0,020	0,121	0,079	0,417	0,113	0,090	0,078
Ammonium-N	mg/L	-	<0,04	<0,04	<0,04	<0,04	<0,04	0,158	<0,04	<0,04	<0,04	<0,04	<0,04
Mangan	mg/L	-	0,30	3 0,058	<0,01	0,146	1,660	0,029	0,096	0,134	0,038	0,249	0,447
Eisen	mg/L	-	0,17	0 <0,01	0,027	0,015	0,026	0,014	<0,01	0,018	0,020	<0,01	0,013
Kohlenwasserstoffe	mg/L	0,100	0,11	6 < 0,1	<0,1	<0,1	<0,1	0,357	<0,1	<0,1	<0,1	<0,1	<0,1
(AOX) Adsorb. Org. geb. Halogenverb.	mg/L	-	<0,01	0,100	0,012	<0,01	0,020	0,012	0,015	0,018	0,015	0,012	<0,01
DOC	mg/L	-	3,13	0 3,320	3,620	2,650	3,000	3,820	4,430	2,970	3,360	2,870	2,710
Säurekapazität	mmol/L	-	4,02	0 3,770	4,470	3,530	3,500	4,370	4,440	3,570	4,780	3,810	3,650
PAK, (Summe PAK ohne Naphthalin)	μg/L	0,200	**	**	**	**	**	**	0,000	**	**	0,000	**
PAK, Naphthalin + Methylnaphthaline, gesamt	μg/L	1,000	**	**	**	**	**	**	0,016	**	**	1,770	**
BTEX (Summe BTEX inkl. alkylierte Benzole)	μg/L	20,000	**	**	**	**	**	**	**	**	**	11,500	**
Benzol	μg/L	1,000	**	**	**	**	**	**	**	**	**	<1	**
LHKW Summe	μg/L	20,000	0,19	0,250	**	0,110	0,140	**	0,290	0,780	**	0,640	**
LHKW Summe Tri- und Terachloreten (TRI+PER)	μg/L	10,000	0,19	0,250	**	0,110	0,140	**	0,290	0,780	**	0,640	**
Arsen	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Blei	μg/L	7,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Cadmium	μg/L	0,500	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2
Chrom	μg/L	7,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Kupfer	μg/L	14,000		<10	<5	<10	<10	<10	<10	<10	<10	<10	<10
Nickel	μg/L	14,000	<10	<10	<4	11,000	18,100	<10	<10	<10	<10	<10	12,600
Quecksilber	μg/L	0,200	<0,03	<0,03	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Zink	μg/L	58,000		0 11,000	<10	14,000	20,000	12,000		<10	453,000		<10
Thallium	μg/L	0,800	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
**: keine Einzelsubstanz nachweisbar													
auffällig; Überschreitung GFS													
auffällig; es existiert kein GFS													

Projekt 15095-3
Brandenburg, Erlensee
Beprobung Grundwassermessstellen
Auswertung der Laborergebnisse

	Geger	nüberstellung der Er	gebnisse ein	zelner Messs	tellen mit vor	rangegangene	en Messunge	n					
Parameter	Messeinheit	Geringfügigkeits- schwellenwert GWS-VwV	GW 0	GW 2	GW 3	GW 4	GW 5	MNA 19-6	l GW 7	GW 8	GW 9	GW 10	GW 11
Datum der Probenahme			09.06.2021	13.12.2021	10.03.2022	07.06.2022	13.09.2022	25.01.2023	28.04.2023	19.10.2023	12.04.2024	04.11.2024	19.08.2025
Nitrat	mg/L	-	<1	<1	<1	<1	<1	<1	<1	<1	<1	2,000	<1
Nitrit	mg/L	-	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	0,122	<0,05	<0,05
Sulfat	mg/L	-	111,000	53,900	101,000	71,700	33,600	141,000	128,000	82,700	122,000	21,200	10,700
Hydrogenkarbonat	mg/L	-	519,000	439,000	469,000	516,000	430,000	547,000	610,000	677,000	720,000	481,000	436,000
Phosphat-P	mg/L	-	0,055	0,088	0,075	0,121	0,073	0,041	0,214	0,588	0,200	0,266	0,250
Ammonium-N	mg/L	-	0,958	0,481	0,682	0,957	0,762	0,980	1,630	2,110	1,360	1,030	0,902
Mangan	mg/L	-	1,580	1,010	1,470	1,240	0,890	1,680	1,820	1,790	1,490	1,050	1,030
Eisen	mg/L	-	0,686	0,959	1,500	1,820	0,980	1,480	2,350	3,060	2,590	2,480	2,640
Kohlenwasserstoffe	mg/L	0,100	<0,1	<0,1	<0,1	<0,1	<0,1	0,183	<0,1	<0,1	0,228	<0,1	<0,1
(AOX) Adsorb. Org. geb. Halogenverb.	mg/L	-	0,019	0,044	0,023	0,021	0,038	0,020	0,032	0,042	0,031	0,028	0,021
DOC	mg/L	-	15,100	14,200	12,400	14,000	13,400	12,100	25,700	19,500	25,100	16,000	13,400
Säurekapazität	mmol/L	-	8,510	7,200	7,680	8,450	7,050	8,960	10,000	11,100	11,800	7,890	7,150
PAK (Summe PAK ohne Naphthalin)	μg/L	0,200	0,144	0,207	**	**	**	**	0,017	0,051	0,098	0,040	0,043
PAK, Naphthalin + Methylnaphthaline, gesamt	μg/L	1,000	**	0,056	**	**	**	**	0,000	0,106	0,000	2,000	0,000
BTEX (Summe BTEX inkl. alkylierte Benzole)	μg/L	20,000	**	**	**	**	**	**	**	**	**	6,400	**
Benzol	μg/L	1,000	**	**	**	**	**	**	**			<1	**
LHKW Summe	μg/L	20,000	0,230	**	0,100		**	**	**	0,260	**	0,220	**
LHKW Summe Tri- und Terachloreten (TRI+PER)	μg/L	10,000	0,230	**	0,100	**	**	**	**	0,260	**	0,220	**
Arsen	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Blei	μg/L	7,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Cadmium	μg/L	0,500	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2
Chrom	μg/L	7,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Kupfer	μg/L	14,000	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Nickel	μg/L	14,000	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Quecksilber	μg/L	0,200	<0,03	<0,03	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Zink	μg/L	58,000	<10	<10	<10	20,000	<10	<10	<10	<10	<10	<10	<10
Thallium	μg/L	0,800		<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
**: keine Einzelsubstanz nachweisbar													
auffällig; Überschreitung GFS													
auffällig; es existiert kein GFS													

Projekt 15095-3
Brandenburg, Erlensee
Beprobung Grundwassermessstellen
Auswertung der Laborergebnisse

	Geger	nüberstellung der Erg	gebnisse einz	elner Messst	ellen mit vora	angegangene	n Messunger	<u> </u>					
Parameter	Messeinheit	Geringfügigkeits- schwellenwert GWS-VwV	GW 0	GW 2	GW 3	l GW 4	l GW 5	MNA 19-7	GW 7	GW 8	l GW 9	GW 10	l GW 11
Datum der Probenahme			09.06.2021	13.12.2021	10.03.2022	07.06.2022	13.09.2022		28.04.2023	19.10.2023	12.04.2024	04.11.2024	19.08.2025
Nitrat	mg/L	-			<1	<1	7,100		<1	<1	<1	2,100	
Nitrit	mg/L	-		<0,05	<0,05	<0,05	<u> </u>	<0,05	-	<0,05	· ·	<0,05	<0,05
Sulfat	mg/L	-	11,100	3,300	7,300	<u> </u>	9,000		4,400		2,700	2,200	
Hydrogenkarbonat	mg/L	-	326,000	345,000	309,000		328,000	 	259,000	232,000	244,000	249,000	
Phosphat-P	mg/L	-	0,337	0,345	0,420	 	 	 	0,326	0,519	0,220	0,290	
Ammonium-N	mg/L	-	0,760	0,793	0,495	 			0,964	0,887	0,817	0,646	<u> </u>
Mangan	mg/L	-	0,586	0,392	0,316		<u> </u>	<u> </u>	0,291	0,295		0,181	0,189
Eisen	mg/L	-	23,700	19,600	22,100		19,200	3,580	9,280	8,070	6,500	6,670	6,330
Kohlenwasserstoffe	mg/L	0,100	0,935	1,460	0,918	1,730	0,787	1,580	2,330	1,830	2,220	1,820	1,880
(AOX) Adsorb. Org. geb. Halogenverb.	mg/L	-	0,030	0,039	0,034		0,052		0,045	0,048	0,037	0,027	0,016
DOC	mg/L	-	14,100	21,500	13,400	 			30,800	18,100	15,300	13,200	14,700
Säurekapazität	mmol/L	-	5,340	5,650	5,070	4,830	5,370	4,840	4,240	3,810	4,000	4,080	5,150
PAK (Summe PAK ohne Naphthalin)	μg/L	0,200	1,750	2,210	<0,01	1,800	2,020	7,400	1,310	26,000	10,364	0,037	1,210
PAK, Naphthalin + Methylnaphthaline, gesamt	μg/L	1,000	0,166	83,500	44,100	86,000	44,600	52,700	58,900	99,000	118,000	80,800	8,890
BTEX (Summe BTEX inkl. alkylierte Benzole)	μg/L	20,000	16,800	475,000	184,000	514,000	69,000	302,000	625,000	450,000	357,000	586,000	324,000
Benzol	μg/L	1,000	**	**	<1	<1	<1	<1	<1	<1	<1	<1	<1
LHKW Summe	μg/L	20,000	**	**	**	**	**	**	**	0,130	**	0,300	**
LHKW Summe Tri- und Terachloreten (TRI+PER)	μg/L	10,000	**	**	**	**	**	**	**	0,130	**	0,300	**
Arsen	μg/L	10,000	11,000	13,000	23,000	<5	20,100	<5	12,400	10,200	9,900	6,700	13,300
Blei	μg/L	7,000			<5	<5	<5	<5	<5	<5	<5	<5	<5
Cadmium	μg/L	0,500			<0,2	<0,2	<0,2	<0,2		<0,2		<0,2	<0,2
Chrom	μg/L	7,000			<5	<5					<5	<5	<5
Kupfer	μg/L	14,000			<10	<10	<10	73,100				<10	<10
Nickel	µg/L	14,000			<10	<10	<10	<10	<10	<10		<10	<10
Quecksilber	μg/L				<0,05	<0,05	<0,05	<0,05		<0,05	<0,05	<0,05	<0,05
Zink	μg/L	58,000			<10	<10	<10	<10				<10	<10
Thallium	μg/L	0,800			<0,5	<0,5		<0,5				<0,5	<0,5
**: keine Einzelsubstanz nachweisbar	. 3			-									
auffällig; Überschreitung GFS													
auffällig; es existiert kein GFS													
Grundwasserstand [mNN]:			108,83	108,30	108,61	108,32	108,10	108,95	108,91	108,53	108,89	108,89	108,52

	GWM MNA 19-1 [muPOK]	GWM MNA 19-1 [mNN]	GWM MNA 19-2 [mNN]	GWM MNA 19-2 [mNN]	GWM MNA 19-3 [mNN]	GWM MNA 19-3 [mNN]	GWM MNA 19-4 [mNN]	GWM MNA 19-4 [mNN]	GWM MNA 19-5 [mNN]	GWM MNA 19-5 [mNN]	GWM MNA 19-6 [mNN]	GWM MNA 19-6 [mNN]	GWM MNA 19-7 [mNN]	GWM MNA 19-7 [mNN]
POK								110,33				111,06		111,53
Datum														
09.06.2021							2,56	107,77			3,13	107,93	2,71	108,83
08.09.2021							2,79	107,54			3,12	107,94	2,97	108,56
13.12.2021							3,03	107,30			3,28	107,78	3,23	108,30
10.03.2022							2,66	107,67			3,09	107,97	2,92	108,61
07.06.2022							3,00	107,33			3,35	107,71	3,21	108,32
13.09.2022							3,23	107,10			3,44	107,62	3,43	108,10
25.01.2023							2,58	107,75			2,40	108,66	2,58	108,95
28.04.2023							2,52	107,81			2,82	108,24	2,62	108,91
19.10.2023							2,90	107,43			3,11	107,95	3,00	108,53
12.04.2024							2,62	107,71			2,76	108,30	2,64	108,89
04.11.2024							2,70	107,63			3,05	108,01	2,64	108,89
19.08.2025							2,89	107,44			3,27	107,79	3,01	108,52
	Solution Sol	telen		R = 3 H = 5: OK "S	M MNA 19-4 19999 826 558145.506 sebe-Kappe' = 110.33 m ü		rung Langendiebac Flur 28	GWM MNA R = 3497133.41 H = 5558240.46 OK 'Seba-Kapp OK Gelande = 1	7 12 ne" = 111.06 m ū.NN	Schubereien & m brei	Zon Filegenhaut	20 Legender cet = Gru wissist = Gru braum = 1est braum =	er Westbathformer Telefor +49 Finesentguingemer Telefor +48 Finese Hasses Wildigmeter	20 Deministration (%

CAL GmbH & Co. KG - Röntgenstraße 82 - 64291 Darmstadt

Baugrundinstitut Franke-Meißner und Partner GmbH M. Sc. Andreas Schmidt Max-Planck-Ring 47

65205 Wiesbaden-Delkenheim

Staatlich anerkannt

Untersuchung Beratung und Auftragsforschung für Industrie und Umweltschutz

Tel. 06151 13633-0 Fax 06151 13633-28

Ihr Auftrag vom 31.07.2025

Ihr Projekt: 15095-3 - MNA Brandenburg, Fliegerhorst Erlensee

Untersuchungsbericht 202508550

Probeneingang

Die Probe(n) wurde(n) durch die CAL GmbH & Co. KG (Herr Herbert) entnommen.

Untersuchungsgegenstand

Probe ID	Eingang	Material	Bezeichnung
202508550-001	19.08.2025	Wasser	GWM MNA 19-4 GW 11
202508550-002	19.08.2025	Wasser	GWM MNA 19-6 GW 11
202508550-003	19.08.2025	Wasser	GWM MNA 19-7 GW 11

Untersuchungsergebnisse

Wasseranalytik

Probenbezeichnung		Proben-ID	202508550-001
GWM MNA 19-4 GW 11			
	Methode	Meßwert	Einheit
Nitrat	DIN EN ISO 10304-1-D20 (2009-07)	2,2	mg/L
Nitrit	DIN EN ISO 10304-1-D20 (2009-07)	< 0,05	mg/L
Sulfat	DIN EN ISO 10304-1-D20 (2009-07)	14,6	mg/L
Hydrogencarbonat	DIN 38405-D8	223	mg/L
Phosphat-P	DIN EN ISO 17294-2-E29 (2017-01)	0,078	mg/L
Ammonium-N	DIN ISO 15923-1-D49 (2014-07)	< 0,04	mg/L
Mangan	DIN EN ISO 17294-2-E29 (2017-01)	0,447	mg/L
Eisen	DIN EN ISO 17294-2-E29 (2017-01)	0,013	mg/L
Kohlenwasserstoffe	DIN EN ISO 9377-2-H53 (2001-07)	< 0,1	mg/L
Adsorb. org. geb. Halogenverb. (AOX)	DIN EN ISO 9562-H14 (2005-02)	< 0,01	mg/L
DOC	DIN EN 1484-H3 (1997-08)	2,71	mg/L
Säurekapazität bei pH 4,3	DIN 38409-H7 (2005-12)	3,65	mmol/L

Polycyclische aromatische KW (EPA-PAK) - Wasser

Probenbezeichnung		Proben-ID	20	2508550-001
GWM MNA 19-4 GW 11				
	Methode	Meßwert		Einheit
Summe EPA-PAK	DIN EN ISO 17993-F18 (2004-03)	**		mg/L
Naphthalin	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Acenaphthylen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Acenaphthen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Fluoren	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Phenanthren	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Anthracen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Fluoranthen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Pyren	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Benzo-(a)-anthracen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Chrysen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Benzo-(b)-fluoranthen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Benzo-(k)-fluoranthen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Benzo-(a)-pyren	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Dibenzo-(ah)-anthracen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Benzo-(ghi)-perylen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Indeno-(123cd)-pyren	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L

^{** =} keine Einzelsubstanzen nachweisbar

Einkernige aromatische KW (BTEX) - Wasser

Probenbezeichnung		Proben-ID	202508550-001
GWM MNA 19-4 GW 11			
	Methode	Meßwert	Einheit
Summe BTEX	DIN 38407-F9-1 (1991-05)	**	mg/L
Benzol	DIN 38407-F9-1 (1991-05)	< 0,001	mg/L
Toluol	DIN 38407-F9-1 (1991-05)	< 0,001	mg/L
Ethylbenzol	DIN 38407-F9-1 (1991-05)	< 0,001	mg/L
m,p-Xylol	DIN 38407-F9-1 (1991-05)	< 0,001	mg/L
o-Xylol	DIN 38407-F9-1 (1991-05)	< 0,001	mg/L
Styrol	DIN 38407-F9-1 (1991-05)	< 0,002	mg/L
Cumol	DIN 38407-F9-1 (1991-05)	< 0,002	mg/L

^{** =} keine Einzelsubstanzen nachweisbar

Schwermetalle - Wasser

Probenbezeichnung		Proben-ID	202508550-001		
GWM MNA 19-4 GW 11	GWM MNA 19-4 GW 11				
	Methode	Meßwert	Einheit		
Arsen	DIN EN ISO 17294-2-E29 (2017-01)	< 0,002	mg/L		
Blei	DIN EN ISO 17294-2-E29 (2017-01)	< 0,001	mg/L		
Cadmium	DIN EN ISO 17294-2-E29 (2017-01)	< 0,0001	t mg/L		
Chrom	DIN EN ISO 17294-2-E29 (2017-01)	< 0,002	mg/L		
Kupfer	DIN EN ISO 17294-2-E29 (2017-01)	< 0,003	mg/L		
Nickel	DIN EN ISO 17294-2-E29 (2017-01)	0,0120	6 mg/L		
Quecksilber	DIN EN ISO 17852-E35 (2008-04)	< 0,0000	mg/L		
Zink	DIN EN ISO 17294-2-E29 (2017-01)	< 0,01	mg/L		
Thallium	DIN EN ISO 17294-2-E29 (2017-01)	< 0,0001	l mg/L		

Leichtflüchtige halogenierte KW (LHKW) inkl. Vinylchlorid - Wasser

Probenbezeichnung		Proben-ID	202508550-001	
GWM MNA 19-4 GW 11				
	Methode	Meßwert	Einheit	
Summe LHKW	DIN EN ISO 10301-F4 (1997-08)	**	mg/L	
Dichlormethan	DIN EN ISO 10301-F4 (1997-08)	< 0,003	mg/L	
cis-1,2-Dichlorethen	DIN EN ISO 10301-F4 (1997-08)	< 0,003	mg/L	
Chloroform	DIN EN ISO 10301-F4 (1997-08)	< 0,002	mg/L	
1,1,1-Trichlorethan	DIN EN ISO 10301-F4 (1997-08)	< 0,0001	mg/L	
Tetrachlormethan	DIN EN ISO 10301-F4 (1997-08)	< 0,0001	mg/L	
Trichlorethen	DIN EN ISO 10301-F4 (1997-08)	< 0,0001	mg/L	
Tetrachlorethen	DIN EN ISO 10301-F4 (1997-08)	< 0,0001	mg/L	
Vinylchlorid	DIN EN ISO 10301-F4 (1997-08)	< 0,0005	mg/L	

^{** =} keine Einzelsubstanzen nachweisbar

Wasseranalytik

Probenbezeichnung		Proben-ID	202508550-002	
GWM MNA 19-6 GW 11				
	Methode	Meßwert	Einheit	
Nitrat	DIN EN ISO 10304-1-D20 (2009-07)	< 1,0	mg/L	
Nitrit	DIN EN ISO 10304-1-D20 (2009-07)	< 0,05	mg/L	
Sulfat	DIN EN ISO 10304-1-D20 (2009-07)	10,7	mg/L	
Hydrogencarbonat	DIN 38405-D8	436	mg/L	
Phosphat-P	DIN EN ISO 17294-2-E29 (2017-01)	0,250	mg/L	
Ammonium-N	DIN ISO 15923-1-D49 (2014-07)	0,902	mg/L	
Mangan	DIN EN ISO 17294-2-E29 (2017-01)	1,03	mg/L	
Eisen	DIN EN ISO 17294-2-E29 (2017-01)	2,64	mg/L	
Kohlenwasserstoffe	DIN EN ISO 9377-2-H53 (2001-07)	< 0,1	mg/L	
Adsorb. org. geb. Halogenverb. (AOX)	DIN EN ISO 9562-H14 (2005-02)	0,021	mg/L	
DOC	DIN EN 1484-H3 (1997-08)	13,4	mg/L	
Säurekapazität bei pH 4,3	DIN 38409-H7 (2005-12)	7,15	mmol/L	

Polycyclische aromatische KW (EPA-PAK) - Wasser

Probenbezeichnung		Proben-ID	20	2508550-002
GWM MNA 19-6 GW 11				
	Methode	Meßwert	t	Einheit
Summe EPA-PAK	DIN EN ISO 17993-F18 (2004-03)	0,000	043	mg/L
Naphthalin	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Acenaphthylen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Acenaphthen	DIN EN ISO 17993-F18 (2004-03)	0,000	043	mg/L
Fluoren	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Phenanthren	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Anthracen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Fluoranthen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Pyren	DIN EN ISO 17993-F18 (2004-03)	< 0,000		mg/L
Benzo-(a)-anthracen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Chrysen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Benzo-(b)-fluoranthen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Benzo-(k)-fluoranthen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Benzo-(a)-pyren	DIN EN ISO 17993-F18 (2004-03)	< 0,000		mg/L
Dibenzo-(ah)-anthracen	DIN EN ISO 17993-F18 (2004-03)	< 0,000		mg/L
Benzo-(ghi)-perylen	DIN EN ISO 17993-F18 (2004-03)	< 0,000		mg/L
Indeno-(123cd)-pyren	DIN EN ISO 17993-F18 (2004-03)	< 0,000		mg/L

^{** =} keine Einzelsubstanzen nachweisbar

Einkernige aromatische KW (BTEX) - Wasser

Probenbezeichnung		Proben-ID	202508550-002	
GWM MNA 19-6 GW 11				
	Methode	Meßwert	Einheit	
Summe BTEX	DIN 38407-F9-1 (1991-05)	**	mg/L	
Benzol	DIN 38407-F9-1 (1991-05)	< 0,001	mg/L	
Toluol	DIN 38407-F9-1 (1991-05)	< 0,001	mg/L	
Ethylbenzol	DIN 38407-F9-1 (1991-05)	< 0,001	mg/L	
m,p-Xylol	DIN 38407-F9-1 (1991-05)	< 0,001	mg/L	
o-Xylol	DIN 38407-F9-1 (1991-05)	< 0,001	mg/L	
Styrol	DIN 38407-F9-1 (1991-05)	< 0,002	mg/L	
Cumol	DIN 38407-F9-1 (1991-05)	< 0,002	mg/L	

^{** =} keine Einzelsubstanzen nachweisbar

Schwermetalle - Wasser

Probenbezeichnung		Proben-ID	202508550-002		
GWM MNA 19-6 GW 11	GWM MNA 19-6 GW 11				
	Methode	Meßwert	Einheit		
Arsen	DIN EN ISO 17294-2-E29 (2017-01)	0,002	1 mg/L		
Blei	DIN EN ISO 17294-2-E29 (2017-01)	< 0,001	mg/L		
Cadmium	DIN EN ISO 17294-2-E29 (2017-01)	< 0,000	1 mg/L		
Chrom	DIN EN ISO 17294-2-E29 (2017-01)	< 0,002	mg/L		
Kupfer	DIN EN ISO 17294-2-E29 (2017-01)	< 0,003	mg/L		
Nickel	DIN EN ISO 17294-2-E29 (2017-01)	0,0064	4 mg/L		
Quecksilber	DIN EN ISO 17852-E35 (2008-04)	< 0,000	05 mg/L		
Zink	DIN EN ISO 17294-2-E29 (2017-01)	< 0,01	mg/L		
Thallium	DIN EN ISO 17294-2-E29 (2017-01)	< 0,000	1 mg/L		

Leichtflüchtige halogenierte KW (LHKW) inkl. Vinylchlorid - Wasser

Probenbezeichnung		Proben-ID	202508550-002	
GWM MNA 19-6 GW 11				
	Methode	Meßwert	Einheit	
Summe LHKW	DIN EN ISO 10301-F4 (1997-08)	**	mg/L	
Dichlormethan	DIN EN ISO 10301-F4 (1997-08)	< 0,003	mg/L	
cis-1,2-Dichlorethen	DIN EN ISO 10301-F4 (1997-08)	< 0,003	mg/L	
Chloroform	DIN EN ISO 10301-F4 (1997-08)	< 0,002	mg/L	
1,1,1-Trichlorethan	DIN EN ISO 10301-F4 (1997-08)	< 0,0001	l mg/L	
Tetrachlormethan	DIN EN ISO 10301-F4 (1997-08)	< 0,0001	l mg/L	
Trichlorethen	DIN EN ISO 10301-F4 (1997-08)	< 0,0001	l mg/L	
Tetrachlorethen	DIN EN ISO 10301-F4 (1997-08)	< 0,0001	l mg/L	
Vinylchlorid	DIN EN ISO 10301-F4 (1997-08)	< 0,0005	5 mg/L	

^{** =} keine Einzelsubstanzen nachweisbar

Wasseranalytik

Probenbezeichnung		Proben-ID	202508550-003	
GWM MNA 19-7 GW 11				
	Methode	Meßwert	Einheit	
Nitrat	DIN EN ISO 10304-1-D20 (2009-07)	2,1	mg/L	
Nitrit	DIN EN ISO 10304-1-D20 (2009-07)	< 0,05	mg/L	
Sulfat	DIN EN ISO 10304-1-D20 (2009-07)	2,1	mg/L	
Hydrogencarbonat	DIN 38405-D8	314	mg/L	
Phosphat-P	DIN EN ISO 17294-2-E29 (2017-01)	0,250	mg/L	
Ammonium-N	DIN ISO 15923-1-D49 (2014-07)	1,10	mg/L	
Mangan	DIN EN ISO 17294-2-E29 (2017-01)	0,189	mg/L	
Eisen	DIN EN ISO 17294-2-E29 (2017-01)	6,33	mg/L	
Kohlenwasserstoffe	DIN EN ISO 9377-2-H53 (2001-07)	1,88	mg/L	
Adsorb. org. geb. Halogenverb. (AOX)	DIN EN ISO 9562-H14 (2005-02)	0,016	mg/L	
DOC	DIN EN 1484-H3 (1997-08)	14,7	mg/L	
Säurekapazität bei pH 4,3	DIN 38409-H7 (2005-12)	5,15	mmol/L	

Polycyclische aromatische KW (EPA-PAK) - Wasser

Probenbezeichnung		Proben-ID	20	2508550-003
GWM MNA 19-7 GW 11				
	Methode	Meßwert	t	Einheit
Summe EPA-PAK	DIN EN ISO 17993-F18 (2004-03)	0,010	1	mg/L
Naphthalin	DIN EN ISO 17993-F18 (2004-03)	0,008	89	mg/L
Acenaphthylen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Acenaphthen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Fluoren	DIN EN ISO 17993-F18 (2004-03)	0,001	18	mg/L
Phenanthren	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Anthracen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Fluoranthen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Pyren	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Benzo-(a)-anthracen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Chrysen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Benzo-(b)-fluoranthen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Benzo-(k)-fluoranthen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Benzo-(a)-pyren	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Dibenzo-(ah)-anthracen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Benzo-(ghi)-perylen	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L
Indeno-(123cd)-pyren	DIN EN ISO 17993-F18 (2004-03)	< 0,000	010	mg/L

^{** =} keine Einzelsubstanzen nachweisbar

Einkernige aromatische KW (BTEX) - Wasser

Probenbezeichnung		Proben-ID 202		2508550-003
GWM MNA 19-7 GW 11				
	Methode	Meßwert	t	Einheit
Summe BTEX	DIN 38407-F9-1 (1991-05)	0,324		mg/L
Benzol	DIN 38407-F9-1 (1991-05)	< 0,001		mg/L
Toluol	DIN 38407-F9-1 (1991-05)	< 0,001		mg/L
Ethylbenzol	DIN 38407-F9-1 (1991-05)	0,242		mg/L
m,p-Xylol	DIN 38407-F9-1 (1991-05)	0,008	80	mg/L
o-Xylol	DIN 38407-F9-1 (1991-05)	0,005	30	mg/L
Styrol	DIN 38407-F9-1 (1991-05)	< 0,002		mg/L
Cumol	DIN 38407-F9-1 (1991-05)	0,068	2	mg/L

^{** =} keine Einzelsubstanzen nachweisbar

Schwermetalle - Wasser

Probenbezeichnung		Proben-ID	202508550-003		
GWM MNA 19-7 GW 11	GWM MNA 19-7 GW 11				
	Methode	Meßwert	Einheit		
Arsen	DIN EN ISO 17294-2-E29 (2017-01)	0,0133	3 mg/L		
Blei	DIN EN ISO 17294-2-E29 (2017-01)	< 0,001	mg/L		
Cadmium	DIN EN ISO 17294-2-E29 (2017-01)	< 0,000	t mg/L		
Chrom	DIN EN ISO 17294-2-E29 (2017-01)	< 0,002	mg/L		
Kupfer	DIN EN ISO 17294-2-E29 (2017-01)	< 0,003	mg/L		
Nickel	DIN EN ISO 17294-2-E29 (2017-01)	0,0043	3 mg/L		
Quecksilber	DIN EN ISO 17852-E35 (2008-04)	< 0,000	05 mg/L		
Zink	DIN EN ISO 17294-2-E29 (2017-01)	< 0,01	mg/L		
Thallium	DIN EN ISO 17294-2-E29 (2017-01)	< 0,000	t mg/L		

Leichtflüchtige halogenierte KW (LHKW) inkl. Vinylchlorid - Wasser

Probenbezeichnung		Proben-ID	202508550-003	
GWM MNA 19-7 GW 11				
	Methode	Meßwert	Einheit	
Summe LHKW	DIN EN ISO 10301-F4 (1997-08)	**	mg/L	
Dichlormethan	DIN EN ISO 10301-F4 (1997-08)	< 0,003	mg/L	
cis-1,2-Dichlorethen	DIN EN ISO 10301-F4 (1997-08)	< 0,003	mg/L	
Chloroform	DIN EN ISO 10301-F4 (1997-08)	< 0,002	mg/L	
1,1,1-Trichlorethan	DIN EN ISO 10301-F4 (1997-08)	< 0,0001	t mg/L	
Tetrachlormethan	DIN EN ISO 10301-F4 (1997-08)	< 0,0001	t mg/L	
Trichlorethen	DIN EN ISO 10301-F4 (1997-08)	< 0,0001	t mg/L	
Tetrachlorethen	DIN EN ISO 10301-F4 (1997-08)	< 0,0001	l mg/L	
Vinylchlorid	DIN EN ISO 10301-F4 (1997-08)	< 0,0005	5 mg/L	

^{** =} keine Einzelsubstanzen nachweisbar

Bei Probenahme und/oder Probenanlieferung durch den Auftraggeber beziehen sich die vorliegenden Prüfergebnisse ausschließlich auf das untersuchte Probenmaterial. Bei Probenahme durch die CAL GmbH & Co. KG sind die vorliegenden Prüfergebnisse repräsentativ für das Probenmaterial und die durchgeführte Probenahme. Die auszugsweise Vervielfältigung dieses Prüfberichts bedarf der schriftlichen Einwilligung des Prüflaboratoriums. * = Fremdleistung durch akkreditiertes Labor. # = nicht akkreditiertes Prüfverfahren. Es wurden keine gesonderten Messunsicherheitsbetrachtungen an den Grenzwerten/Richtwerten vorgenommen. Die erweiterten Messunsicherheiten werden regelmäßig im Labor parameterbezogen ermittelt und können auf Anfrage mitgeteilt werden.

geprüft und freigegeben CAL GmbH & Co. KG 23.09.2025 10:19:02 +02 Dr.-Ing. Marcus Süßner, Laborleitung

Die Probe(n) wurde(n) vom 19.08.2025 bis zum 23.09.2025 bearbeitet.

Entnahmeprotokoll Grundwasser

Allgemeines

Messstelle GWM MNA 19-4 GW 11

Proben ID 202508550-001

Probenahmedatum 19.08.2025

Probenehmer CAL GmbH & Co. KG (Herr Herbert)

Wetter sonnig

Anlass der Probenahme GW-Monitoring

Pegelkenndaten

Material HDPE
Pegelausbau Überflur
Durchmesser 12,50 cm
Ausbautiefe 4,09 m
Pegelvolumen ca. 12 L
Art der Probenahme Pumpprobe

Probenahmegerät Motortauchpumpe
Schlauchmaterial Teflonschlauch
Einbautiefe 4,00 m u. POK
Förderrate 3,0 L/min
Pumpdauer 15 min
Gesamtfördermenge 45 L

Entnahmedaten

Farbe braun Trübung schwach Geruch ohne Bodensatz ja 27,0 °C Lufttemperatur 20,4 °C Wassertemperatur pH-Wert bei 25 °C 6,77 el. Leitfähigkeit bei 25 °C 342 µS/cm

Redoxpotential 352 mV Sauerstoff 0,4 mg/L

Grundwasserabstich

Pegelstand vor 2,89 m
Pegelstand nach 3,69 m
Wiederanstieg nach 5 min 3,21 m
Bemerkungen keine

Transportbedingungen Isolierbehälter
Probenübergabe an CAL am 19.08.2025

Entnahmeprotokoll Grundwasser

Allgemeines

Messstelle GWM MNA 19-6 GW 11

Proben ID 202508550-002

Probenahmedatum 19.08.2025

Probenehmer CAL GmbH & Co. KG (Herr Herbert)

Wetter sonnig

Anlass der Probenahme GW-Monitoring

Pegelkenndaten

Material HDPE
Pegelausbau Überflur
Durchmesser 12,50 cm
Ausbautiefe 6,10 m
Pegelvolumen ca. 35 L
Art der Probenahme Pumpprobe

Probenahmegerät Motortauchpumpe Schlauchmaterial Teflonschlauch Einbautiefe 5,00 m u. POK Förderrate 10,0 L/min Pumpdauer 15 min Gesamtfördermenge 150 L

Entnahmedaten

Farbe farblos Trübung ohne Geruch modrig Bodensatz nein Lufttemperatur 26,0 °C 15,4 °C Wassertemperatur pH-Wert bei 25 °C 7,06 el. Leitfähigkeit bei 25 °C 674 µS/cm Redoxpotential 146 mV

Grundwasserabstich

Sauerstoff

Pegelstand vor 3,27 m
Pegelstand nach 3,98 m
Wiederanstieg nach 5 min 3,51 m
Bemerkungen keine

Transportbedingungen Isolierbehälter
Probenübergabe an CAL am 19.08.2025

0,1 mg/L

Entnahmeprotokoll Grundwasser

Allgemeines

Messstelle GWM MNA 19-7 GW 11

Proben ID 202508550-003

Probenahmedatum 19.08.2025

Probenehmer CAL GmbH & Co. KG (Herr Herbert)

Wetter sonnig

Anlass der Probenahme GW-Monitoring

Pegelkenndaten

Material HDPE
Pegelausbau Überflur
Durchmesser 12,50 cm
Ausbautiefe 6,10 m
Pegelvolumen ca. 35 L
Art der Probenahme Pumpprobe

Probenahmegerät Motortauchpumpe
Schlauchmaterial Teflonschlauch
Einbautiefe 5,00 m u. POK
Förderrate 10,0 L/min
Pumpdauer 15 min
Gesamtfördermenge 150 L

Entnahmedaten

Farbe farblos
Trübung ohne
Geruch aromatisch

Bodensatz nein

Lufttemperatur 23,0 °C

Wassertemperatur 16,9 °C

pH-Wert bei 25 °C 6,68

el. Leitfähigkeit bei 25 °C 479 μ S/cm Redoxpotential 167 mV Sauerstoff 4,2 mg/L

Grundwasserabstich

Pegelstand vor 3,01 m
Pegelstand nach 4,57 m
Wiederanstieg nach 5 min 3,62 m
Bemerkungen keine

Transportbedingungen Isolierbehälter
Probenübergabe an CAL am 19.08.2025